

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4022B MSI
 4-stage divide-by-8 Johnson counter

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4022B is a 4-stage divide-by-8 Johnson counter with eight spike-free decoded active HIGH outputs (O_{0} to O_{7}), an active LOW output from the most significant flip-flop ($\overline{\mathrm{O}}_{4-7}$), active HIGH and active LOW clock inputs $\left(\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}\right)$ and an overriding asynchronous master reset input (MR).

The counter is advanced by either a LOW to HIGH transition at CP_{0} while $\overline{\mathrm{CP}}_{1}$ is LOW or a HIGH to LOW transition at $\overline{\mathrm{CP}}_{1}$ while CP_{0} is HIGH (see also function table). Either CP_{0} or CP_{1} may be used as clock input to the
counter and the other clock input may be used as a clock enable input. When cascading counters, the $\overline{\mathrm{O}}_{4-7}$ output, which is LOW while the counter is in states, $4,5,6$ and 7 , can be used to drive the CP_{0} input of the next counter.

A HIGH on MR resets the counter to zero ($\mathrm{O}_{0}=\overline{\mathrm{O}}_{4-7}=\mathrm{HIGH} ; \mathrm{O}_{1}$ to $\mathrm{O}_{7}=\mathrm{LOW}$) independent of the clock inputs $\left(\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}\right)$.

Automatic code correction of the counter is provided by an internal circuit, following any illegal code the counter returns to a proper counting mode within 11 clock pulses.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF4022BP(N): $\begin{gathered}\text { 16-lead DIL; plastic } \\ \\ \text { (SOT38-1) }\end{gathered}$
HEF4022BD(F): $\begin{gathered}\text { 16-lead DIL; ceramic (cerdip) } \\ \\ \text { (SOT74) }\end{gathered}$
HEF4022BT(D): $\begin{gathered}\text { 16-lead SO; plastic } \\ \text { (SOT109-1) }\end{gathered}$
(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

PINNING

CP_{O}	clock input (LOW to HIGH; edge-triggered)
$\overline{\mathrm{CP}}_{1}$	clock input (HIGH to LOW; edge-triggered)
MR	master reset input
O_{0} to O_{7}	decoded outputs
O_{4-7}	carry output (active LOW)

3
G661 Kıenuer

Fig． 3 Logic diagram
ISW
タてટ0カヨヨH

4-stage divide-by-8 Johnson counter

FUNCTION TABLE

MR	$\mathbf{C P}_{\mathbf{0}}$	$\overline{\mathbf{C P}}_{\mathbf{1}}$	OPERATION
H	X	X	$\mathrm{O}_{0}=\overline{\mathrm{O}}_{4-7}=\mathrm{H} ; \mathrm{O}_{1}$ to $\mathrm{O}_{7}=\mathrm{L}$
L	H	L	Counter advances
L	$\boldsymbol{\Gamma}$	L	Counter advances
L	L	X	No change
L	X	H	No change
L	H	$\boldsymbol{\Gamma}$	No change
L	L	L	No change

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\Gamma=$ positive-going transition
$\mathcal{L}=$ negative-going transition

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 195 \\ 75 \\ 50 \end{array}$	$\begin{aligned} & 390 \\ & 145 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} 168 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 64 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} \hline 245 \\ 95 \\ 60 \end{array}$	$\begin{aligned} & \hline 485 \\ & 195 \\ & 125 \end{aligned}$	ns ns ns	$\begin{aligned} 218 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 84 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 52 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \overline{\mathrm{O}}_{4-7}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tPHL	$\begin{array}{r} 245 \\ 90 \\ 60 \end{array}$	$\begin{aligned} & 485 \\ & 185 \\ & 120 \end{aligned}$	ns ns ns	$\begin{aligned} 218 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 79 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 52 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} 190 \\ 75 \\ 50 \end{array}$	$\begin{aligned} & 380 \\ & 145 \\ & 105 \end{aligned}$	ns ns ns	$\begin{aligned} 163 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 64 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{1} \text { to } \mathrm{O}_{7}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 130 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 260 \\ 105 \\ 75 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 103 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 44 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{0}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PL }}$	$\begin{array}{r} 130 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 260 \\ 105 \\ 75 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & 103 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$\mathrm{MR} \rightarrow \overline{\mathrm{O}}_{4-7}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PL }}$	$\begin{array}{r} \hline 110 \\ 45 \\ 35 \end{array}$	$\begin{array}{r} 220 \\ 90 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 83 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {H }}$ L	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {L }}$ LH	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$

4-stage divide-by-8 Johnson counter

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Hold times $\mathrm{CP}_{0} \rightarrow \overline{\mathrm{CP}}_{1}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{array}{r} 140 \\ 50 \\ 30 \end{array}$	$\begin{aligned} & 70 \\ & 25 \\ & 15 \end{aligned}$	ns ns ns	see also waveforms Figs 4 and 5
$\overline{\mathrm{CP}}_{1} \rightarrow \mathrm{CP}_{0}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{array}{r} \hline 170 \\ 60 \\ 40 \end{array}$	$\begin{aligned} & 85 \\ & 30 \\ & 20 \end{aligned}$	ns ns ns	
Minimum clock pulse width	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twCP	$\begin{aligned} & 75 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 15 \\ & 10 \end{aligned}$	ns ns ns	
Minimum MR pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twmRH	$\begin{aligned} & 70 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 15 \\ & 10 \end{aligned}$	ns ns ns	
Recovery time for MR	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {RMR }}$	$\begin{aligned} & 30 \\ & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	3 8 12	$\begin{array}{r} 6 \\ 16 \\ 24 \end{array}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 475 f_{i}+\sum\left(f_{0} C L\right) \times V_{D D}{ }^{2} \\ 2400 f_{i}+\sum\left(f_{0} C L\right) \times V_{D D}{ }^{2} \\ 6700 f_{i}+\sum\left(f_{0} C L\right) \times V_{D D}{ }^{2} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ total load capacitance (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

4-stage divide-by-8 Johnson counter

Fig. 4 Waveforms showing hold times for CP_{0} to $\overline{\mathrm{CP}}_{1}$ and $\overline{\mathrm{CP}}_{1}$ to CP_{0}. Hold times are shown as positive values, but may be specified as negative values.

Conditions: $\overline{\mathrm{CP}}_{1}=\mathrm{LOW}$ while CP_{0} is triggered on a LOW to HIGH transition.
$\mathrm{t}_{\mathrm{WCP}}$ and $\mathrm{t}_{\mathrm{RMR}}$ also apply when $\mathrm{CP}_{0}=\mathrm{HIGH}$ and $\overline{\mathrm{CP}}_{1}$ is triggered on
a HIGH to LOW transition.

Fig. 5 Waveforms showing recovery time for MR; minimum CP_{0} and MR pulse widths.

Fig. 6 Timing diagram.

4-stage divide-by-8 Johnson counter

APPLICATION INFORMATION

Some of the features of the HEF4022B are:

- High speed
- Spike-free decoded outputs
- Carry output for cascading

Figure 7 shows a technique for extending the number of decoded output states for the HEF4022B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

Fig. 7 Counter expansion.

